Both BMPs and Wnts play important roles in the regulation of bone formation. We examined the molecular mechanism regulating cross-talk between BMPs and Wnts in the osteoblastic differentiation of C2C12 cells. Canonical Wnts (Wnt1 and Wnt3a) but not non-canonical Wnts (Wnt5a and Wnt11) synergistically stimulated ALP activity in the presence of BMP-4. Wnt3a and BMP-4 synergistically stimulated the expression of type I collagen and osteonectin. However, Wnt3a did not stimulate ALP activity that was induced by a constitutively active BMP receptor or Smad1. Noggin and Dkk-1 suppressed the synergistic effect of BMP-4 and Wnt3a, but Smad7 did not. Overexpression of beta-catenin did not affect BMP-4-induced ALP activity. By contrast, inhibition or stimulation of GSK3beta activity resulted in either stimulation or suppression of ALP activity, respectively, in the presence of BMP-4. Taken together, these findings suggest that BMPs and canonical Wnts may regulate osteoblastic differentiation, especially at the early stages, through a GSK3beta-dependent but beta-catenin-independent mechanism.
Copyright 2010 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.