Cytolytic effectors polarize toward target cells for effective killing and IFN-gamma secretion. The spatiotemporal features of this polarization and their importance for cytolysis have not been resolved. In cytotoxic T cells and natural killer (NK) cells, transient polarization was consistently associated with effective killing. Polarization was regulated by Cdc42, a small Rho family GTPase universally critical for cytoskeletal dynamics. Transient accumulation of active Cdc42 at the cytolytic effector/target cell interface and focus of such accumulation on the interface center were closely related to cytolysis. Surprisingly, however, the intensity of Cdc42 activation was not. We interfered with Cdc42 activation in NK cells such that sustained polarization in long lasting nonkilling cell couples was selectively blocked. Thus the proportion of the NK cell population displaying transient polarization was increased. As a consequence, cytolytic responder frequency and IFN-gamma production were enhanced upon such interference with Cdc42 activation. These data support the notion that transience in polarization is critical for cytolytic effector function, likely by preventing cytolytic effectors from becoming trapped in nonproductive target cell interactions.