Salmonid alphavirus (SAV) is the most divergent member of the family Togaviridae and constitutes a threat to farming of salmonid fish in Europe. Here, we report cloning, expression and preliminary functional analysis of the capsid protein of SAV, confirming it to be expressed as an approximately 31-kDa protein in infected cells. The protein localizes strictly to the cytoplasm in Chinook salmon embryo cells, and either to the nucleus or cytoplasm in bluegill fry cells. An expression study of full-length and different truncated versions of the SAV capsid fused to the enhanced green fluorescent protein demonstrated that the localization is independent of other viral components in both cell lines, and controlled by the N-terminal 82 aa, which include a conserved, predicted helix and a downstream positively charged region. Thus, the results suggest that the SAV capsid possesses a cell-type-dependent potential for nuclear import and export. Moreover, the SAV capsid and its N-terminal 82 aa were shown to be associated with inhibition of cellular proliferation, a hallmark of the cytopathic effect caused by SAV. These results highlight that the SAV capsid is a multifunctional protein with possible importance for pathogenesis.