Glyburide (GLB) is an oral sulfonylurea, commonly used for the treatment of gestational diabetes mellitus. It has been reported that the clearance of GLB in pregnant women is significantly higher than that in nonpregnant women. The molecular mechanism by which pregnancy increases the clearance of GLB is not known, but it may be caused by increased CYP3A activity. Because liver tissue from pregnant women is not readily available, in the present study, we investigated the mechanism of such pregnancy-related changes in GLB disposition in a mouse model. We demonstrated that the systemic clearance of GLB in pregnant mice was increased approximately 2-fold (p < 0.01) compared with nonpregnant mice, a magnitude of change similar to that observed in the clinical study. Plasma protein binding of GLB in mice was not altered by pregnancy. The half-life of GLB depletion in hepatic S-9 fractions of pregnant mice was significantly shorter than that of nonpregnant mice. Moreover, GLB depletion was markedly inhibited by ketoconazole, a potent inhibitor of mouse Cyp3a, suggesting that GLB metabolism in mice is primarily mediated by hepatic Cyp3a. These data suggest that the increased systemic clearance of GLB in pregnant mice is likely caused by an increase in hepatic Cyp3a activity during pregnancy, and they provide a basis for further mechanistic understanding and analysis of pregnancy-induced alterations in the disposition of GLB and drugs that are predominantly and extensively metabolized by CYP3A/Cyp3a.