Loss of matrix metalloproteinase-2 amplifies murine toxin-induced liver fibrosis by upregulating collagen I expression

Dig Dis Sci. 2011 Feb;56(2):406-16. doi: 10.1007/s10620-010-1296-0. Epub 2010 Jun 19.

Abstract

Background and aims: Matrix metalloproteinase-2 (MMP-2), a type IV collagenase secreted by activated hepatic stellate cells (HSCs), is upregulated in chronic liver disease and is considered a profibrotic mediator due to its proliferative effect on cultured HSCs and ability to degrade normal liver matrix. Although associative studies and cell culture findings suggest that MMP-2 promotes hepatic fibrogenesis, no in vivo model has definitively established a pathologic role for MMP-2 in the development and progression of liver fibrosis. We therefore examined the impact of MMP-2 deficiency on liver fibrosis development during chronic CCl(4) liver injury and explored the effect of MMP-2 deficiency and overexpression on collagen I expression.

Methods: Following chronic CCl(4) administration, liver fibrosis was analyzed using Sirius Red staining with quantitative morphometry and real-time polymerase chain reaction (PCR) in MMP-2-/- mice and age-matched MMP-2+/+ controls. These studies were complemented by analyses of cultured human stellate cells.

Results: MMP-2-/- mice demonstrated an almost twofold increase in fibrosis which was not secondary to significant differences in hepatocellular injury, HSC activation or type I collagenase activity; however, type I collagen messenger RNA (mRNA) expression was increased threefold in the MMP-2-/- group by real-time PCR. Furthermore, targeted reduction of MMP-2 in cultured HSCs using RNA interference significantly increased collagen I mRNA and protein, while overexpression of MMP-2 resulted in decreased collagen I mRNA.

Conclusions: These findings suggest that increased MMP-2 during the progression of liver fibrosis may be an important mechanism for inhibiting type I collagen synthesis by activated HSCs, thereby providing a protective rather than pathologic role.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carbon Tetrachloride / administration & dosage
  • Carbon Tetrachloride / toxicity
  • Cell Line
  • Collagen Type I / genetics
  • Collagen Type I / metabolism*
  • Dose-Response Relationship, Drug
  • Hepatic Stellate Cells
  • Humans
  • Liver Cirrhosis / chemically induced*
  • Matrix Metalloproteinase 2 / genetics
  • Matrix Metalloproteinase 2 / metabolism*
  • Mice
  • Mice, Knockout
  • RNA / genetics
  • RNA / metabolism
  • Up-Regulation / genetics
  • Up-Regulation / physiology*

Substances

  • Collagen Type I
  • RNA
  • Carbon Tetrachloride
  • Matrix Metalloproteinase 2