The aim of this study was to investigate the spatiotemporal development of autonomic nerve fibers and primordial germ cells (PGCs) along their migratory route from the dorsal mesentery to the gonadal ridges in human embryos using immunohistochemical markers and electron microscopy. Autonomic nerve fibers in the dorsal mesentery, the pre-aortic and para-aortic plexuses and in the gonadal ridge were stained for beta III tubulin, neuron specific enolase and the glia fibrillary acidic protein. Electron microscopy demonstrated the presence of neurofilaments and neurotubules in these nerve fibers and their intimate contact with PGCs. PGCs expressed GAGE, MAGE-A4, OCT4 and c-Kit. Serial paraffin sections showed that most PGCs were located inside bundles of autonomic nerve fibers with the majority adjacent to the most peripheral fibers (close to Schwann cells). We also show that both nerve fibers and PGCs arrive at the gonadal ridge between 29 and 33 days pc. In conclusion, our data suggest that PGCs in human embryos preferentially migrate along autonomic nerve fibers from the dorsal mesentery to the developing gonad where they are delivered via a fine nerve plexus.