Strand-transfer inhibitors, of which raltegravir, elvitegravir and S/GSK1349572, is a new class of antiretrovirals that inhibit HIV integrase-catalyzed insertion of the HIV-1 genome into cell chromosomes. The results of clinical trials were very encouraging regarding their viral efficiency and tolerance. However resistance mutations were identified in patients failing to respond to treatment with these inhibitors, involving primary mutations as well as numerous secondary mutations. This review focuses on recent advanced computational studies that have highlighted the contribution of those residues subject to primary mutations and the role of conformational flexibility of the enzyme in binding to strand-transfer inhibitors.
Copyright © 2010 Elsevier Ltd. All rights reserved.