The western tarnished plant bug Lygus hesperus Knight (Heteroptera: Miridae), a major pest of cotton and other key economic crops, was tested for its sensitivity to population density during nymph and adult stages. Nymphs reared to adulthood under increasing densities in laboratory conditions exhibited incremental delays in maturation, heightened mortality rates, and reductions in body mass and various size parameters. In contrast, gonadal activity in both males and females rose with initial density increases. Supplemental nutrients provided to the nymphs failed to offset the negative effects of high density, suggesting that contact frequency, rather than resource partitioning, may be the primary stress. Unlike nymphs, newly enclosed adults exposed to increasing population densities did not suffer negative physiological effects; body mass, mortality rates and patterns of ovipositional activity were unchanged. Collectively, these results indicate that population density can dramatically influence Lygus development, but the specific effects are stage-dependent.