Soil [N] modulates soil C cycling in CO2-fumigated tree stands: a meta-analysis

Plant Cell Environ. 2010 Dec;33(12):2001-11. doi: 10.1111/j.1365-3040.2010.02201.x.

Abstract

Under elevated atmospheric CO(2) concentrations, soil carbon (C) inputs are typically enhanced, suggesting larger soil C sequestration potential. However, soil C losses also increase and progressive nitrogen (N) limitation to plant growth may reduce the CO(2) effect on soil C inputs with time. We compiled a data set from 131 manipulation experiments, and used meta-analysis to test the hypotheses that: (1) elevated atmospheric CO(2) stimulates soil C inputs more than C losses, resulting in increasing soil C stocks; and (2) that these responses are modulated by N. Our results confirm that elevated CO(2) induces a C allocation shift towards below-ground biomass compartments. However, the increased soil C inputs were offset by increased heterotrophic respiration (Rh), such that soil C content was not affected by elevated CO(2). Soil N concentration strongly interacted with CO(2) fumigation: the effect of elevated CO(2) on fine root biomass and -production and on microbial activity increased with increasing soil N concentration, while the effect on soil C content decreased with increasing soil N concentration. These results suggest that both plant growth and microbial activity responses to elevated CO(2) are modulated by N availability, and that it is essential to account for soil N concentration in C cycling analyses.

Publication types

  • Comparative Study
  • Meta-Analysis
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Atmosphere*
  • Biomass
  • Carbon Cycle*
  • Carbon Dioxide*
  • Fertilizers
  • Nitrogen Cycle*
  • Soil / analysis*
  • Trees / growth & development*

Substances

  • Fertilizers
  • Soil
  • Carbon Dioxide