Aim: To investigate the protective effects of octacosanol in 6-hydroxydopamine-induced Parkinsonian rats and find whether octacosanol has effects on pro nerve growth factor (pro-NGF), NGF and the downstream effector proteins.
Methods: Behavioral tests, enzymatic assay, tyrosine hydroxylase immunohistochemistry, TUNEL and Western blot were used to investigate the effects of octacosanol in this rat model of PD.
Results: Oral administration of octacosanol (35-70 mg/kg, po for 14 d) significantly improved the behavioral impairments in rats induced by 6-OHDA and dose-dependently preserved the free radical scavenging capability of the striatum. Octacosanol treatment also effectively ameliorated morphological appearances of TH-positive neuronal cells in nigrostriatal systems and decreased the apoptotic cells induced by 6-OHDA in striatum. In addition, octacosanol strikingly blocked the 6-OHDA-induced increased expression of proNGF-p75NTR-sortilin death signaling complex and its downstream effector proteins. Meantime, octacosanol prevented the decreased levels of NGF, its receptors TrkA and p-Akt which together mediated the cell survival pathway.
Conclusion: The findings implicated that the anti-parkinsonism effects afforded by octacosanol might be mediated by its neuro-microenvironment improving potency through retrieving the ratios of proNGF:NGF and the respective receptors p75NTR:TrkA in vivo. Due to its excellent tolerability and non-toxicity, octacosanol may be a promising agent for PD treatment.