Epidermal growth factor receptor gene amplification in atypical adenomatous hyperplasia of the lung

Am J Transl Res. 2010 May 16;2(3):309-15.

Abstract

Atypical adenomatous hyperplasia (AAH) is postulated to be the earliest morphologic precursor lesion in lung carcinogenesis. The epidermal growth factor receptor (EGFR), one of the members of the Erb-2 family of receptors, is commonly expressed in non-small cell lung carcinoma (NSCLC). A subset of the patients with NSCLC has molecular abnormalities in the EGFR gene, including missense mutations and deletions and/or abnormal gene copy numbers, and the relative importance of each of these for patient outcome is an area of great interest. Recent reports show that EGFR mutations are rare or absent in AAH and are rare in bronchioloalveolar carcinoma (BAC). However, the EGFR gene copy number status in AAH is unknown. In this study, we examined the EGFR gene copy number status in lung adenocarcinomas, synchronous AAH, and BAC in surgical pathology resection specimens. EGFR gene copy number was analyzed by chromogenic in situ hybridization (CISH) using formalin fixed paraffin embedded tissue sections and EGFR probes as recommended by the manufacturer. A known positive case of high-grade glioma was used as a positive control. The results indicate that four of eight adenocarcinomas (50%) had more than five EGFR signals per nucleus, suggesting a gain in copy number. Interestingly, in four of nine cases of AAH (44.4%) more than three EGFR signals per nucleus were noted, with scattered cells showing up to 6 signals per nucleus. In addition, in five of 12 cases of BAC (42%), more than three EGFR signals per nucleus were noted. In the remaining cases two to three intranuclear dot-like peroxidase positive signals were present consistent with non-amplification of the gene. Our study reveals an abnormal EGFR gene copy gain in several cases of AAH. In our cohort, the rate of EGFR gene copy abnormalities in AAH appears similar to BAC and lower than in lung adenocarcinomas. These findings suggest that although EGFR gene copy abnormalities may be an early event in lung carcinogenesis, they are associated with tumor progression to invasive cancer and highlight the complexity of tumor morphogenesis.

Keywords: EGFR; chromogenic in situ hybridization; copy number; lung cancer.