Infectious complications after orthotopic liver transplantation (OLT) are a major clinical problem. The lectin pathway of complement activation is liver-derived and a crucial effector of the innate immune defense against pathogens. Polymorphisms in lectin pathway genes determine their functional activity. We assessed the relationship between these polymorphic genes and clinically significant bacterial infections, i.e., sepsis, pneumonia, and intra-abdominal infection, and mortality within the first year after OLT, in relation to major risk factors in two cohorts from different transplant centers. Single-nucleotide polymorphisms in the mannose-binding lectin gene (MBL2), the ficolin-2 gene (FCN2), and the MBL-associated serine protease gene (MASP2) of recipients and donors were determined. Recipients receiving a donor liver in the principal cohort with polymorphisms in all three components i.e., MBL2 (XA/O; O/O), FCN2+6359T, and MASP2+371A, had a cumulative risk of an infection of 75% as compared to 18% with wild-type donor livers (P = 0.002), an observation confirmed in the second cohort (P = 0.04). In addition, a genetic (mis)match between donor and recipient conferred a two-fold higher infection risk for each separate gene. Multivariate Cox analysis revealed a stepwise increase in infection risk with the lectin pathway gene profile of the donor (hazard ratio = 4.52; P = 8.1 x 10(-6)) and the donor-recipient (mis)match genotype (hazard ratio = 6.41; P = 1.9 x 10(-7)), independent from the other risk factors sex and antibiotic prophylaxis (hazard ratio > 1.7 and P < 0.02). Moreover, patients with a lectin pathway gene polymorphism and infection had a six-fold higher mortality (P = 0.9 x 10(-8)), of which 80% was infection-related.
Conclusion: Donor and recipient gene polymorphisms in the lectin complement pathway are major determinants of the risk of clinically significant bacterial infection and mortality after OLT.