The first event in the process of translocation of a cell over a substrate is the forward protrusion of a thin layer of cytoplasm, sometimes referred to as the leading edge. To gain more direct information on structural reorganizations associated with protrusion we have documented the ultrastructure of the actin cytoskeleton of mouse macrophages whose history of locomotion prior to fixation for electron microscopy had been recorded by video microscopy. It is shown that rapid protrusion is associated with the formation of a dense, diagonal network of actin filaments, lacking organized bundles. In cell edges that showed minor fluctuations back and forth over a period of 30 sec or more no dense meshworks were found: instead, a loose peripheral bundle of actin filaments was commonly observed. Cell edges that first protruded and then retracted showed a similar ultrastructure to those that exhibited only forward movement, but the width of the leading edge meshwork was, by comparison, reduced. Measurements showed that there was an approximate correlation between the leading edge mesh width and the net forward translocation observed during the terminal 30 sec, up to fixation. The results are discussed in relation to present concepts of the protrusion mechanism.