Purpose: The aim of this study was to determine in vivo inhibition by the isoflavones genistein and daidzein of nitrofurantoin (NTF), a well-known substrate of the ABC transporter BCRP/ABCG2.
Methods: MDCKII cells and their human BCRP- and murine Bcrp1-transduced subclones were used to establish inhibition in transepithelial transport assays. Bcrp1(-/-) and wild-type mice were coadministered with nitrofurantoin (20 mg/kg) and a mixture of genistein (100 mg/kg) and daidzein (100 mg/kg).
Results: Transepithelial NFT transport was inhibited by the isoflavones. Plasma concentration of NTF at 30 min was 1.7-fold higher (p ≤ 0.05) in wild-type mice after isoflavone administration. AUC values were not significantly different. BCRP/ABCG2-mediated secretion into milk was inhibited since milk/plasma ratios were lower in wild-type mice with isoflavones (7.1 ± 4.2 vs 4.2 ± 1.6, p ≤ 0.05). NTF bile levels were significantly decreased by isoflavone administration in wild-type animals (8.8 ± 3.4 μg/ml with isoflavones vs 3.7 ± 3.3 μg/ml without isoflavones).
Conclusion: Our data showed that in vivo interaction of high doses of soy isoflavones with BCRP substrates may affect plasma levels but the main effect occurs in specific target organs, in our case, liver and mammary glands.