Validation of short-term handling and storage conditions for marrow and peripheral blood stem cell products

Transfusion. 2011 Jan;51(1):137-47. doi: 10.1111/j.1537-2995.2010.02758.x.

Abstract

Background: Allogeneic hematopoietic stem cell transplants from unrelated donors are routinely used in the treatment of patients with hematologic malignancies. These cellular products are often collected off-site and require transport from the collection site to transplantation centers. However, the effects of transport conditions and media on stem cell graft composition during short-term storage have not been well described.

Study design and methods: Five bone marrow (BM), four filgrastim-mobilized peripheral blood stem cell (PBSC), and four nonmobilized peripheral blood mononuclear cell (PBMNC) products were collected from healthy volunteer donors and stored at 4 or 20°C for up to 72 hours in 10% PlasmaLyte A plus anticoagulants such as 10% acid citrate dextran-A (ACD-A) and/or 10 IU/mL heparin. Products were evaluated at 0, 24, 48, and 72 hours for cellular content, viability, and metabolic activities.

Results: BM products maintained equivalent cell viability when stored at either 4 or 20°C over 72 hours, but cell viability was better maintained for PBSC products stored at 4°C. The mean viable CD34+ cell recovery for PBSC and BM products stored over 72 hours at 4°C was higher than 75%. Significantly lower CD34+ cell and colony-forming unit recoveries were seen in PBSC products but not BM products stored at room temperature. Faster lactic acid accumulation was observed in PBMNC and PBSC products stored without ACD-A.

Conclusions: Seventy-two-hour storage of BM, PBSC, and PBMNC products at refrigerated temperature maintains optimal cell viability and recovery. Anticoagulation with ACD-A is preferred over heparin to reduce lactic acid accumulation in the product media.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Validation Study

MeSH terms

  • Cell Survival
  • Hematopoietic Stem Cell Transplantation
  • Hematopoietic Stem Cells / cytology*
  • Humans
  • Leukocytes, Mononuclear / cytology*
  • Temperature
  • Time Factors
  • Tissue Preservation / methods*
  • Transplantation, Homologous