Proactive screening approach for detecting groundwater contaminants along urban streams at the reach-scale

Environ Sci Technol. 2010 Aug 15;44(16):6088-94. doi: 10.1021/es101492x.

Abstract

Here we outline and demonstrate a screening approach for the detection of groundwater contaminants along urban streams within unconsolidated beds. It involves the rapid acquisition of groundwater samples along urban stream reaches at a spacing of about 10 m and from depths of about 25-75 cm below the streambed, with analyses for a suite of potential contaminants. This screening approach may serve two functions: a) providing information for assessing and mitigating the toxicity and eutrophication risks to aquatic ecosystems posed by groundwater contaminants and b) detecting and identifying groundwater contamination in urban settings more rapidly and inexpensively compared to land-based well installations. The screening approach was tested at three urban streams, each affected by a known chlorinated-solvent plume. All three known groundwater plumes were detected and roughly delineated. Multiple, previously unknown, areas or types of groundwater contamination were also identified at each stream. The newly identified contaminants and plumes included petroleum hydrocarbons (BTEX, naphthalene, MTBE), 1,4-dioxane, nitrate and phosphate, road salt, and various metals (including arsenic, cadmium, chromium, copper, lead) at elevated concentrations compared to background values and relevant Canadian water quality guidelines. These findings suggest that this screening approach may be a useful tool for both ecologists performing ecological assessments and stream restorations and for hydrogeologists undertaking groundwater protection activities. Given the numerous contaminants detected, it may be appropriate to apply this technique proactively to better determine the pervasiveness of urban groundwater contaminants, especially along urban streams.

MeSH terms

  • Canada
  • Cities*
  • Environmental Monitoring / methods*
  • Metals / analysis
  • Rivers / chemistry*
  • Soil / analysis*
  • Water Pollutants, Chemical / analysis*
  • Water Supply / analysis*

Substances

  • Metals
  • Soil
  • Water Pollutants, Chemical