Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes inflammation and destruction of the joints. In the collagen-induced arthritis mouse model of RA, we developed a nonviral gene therapy method designed to block in situ the main cytokine tumour necrosis factor (TNF)-alpha
Methods: Electrotransfer was used to deliver a plasmid encoding extracellular domain of mouse soluble TNF-alpha receptor type I fused to the Fc fragment of mouse immunoglobulin (Ig)G1 (pTNFR-Is) corresponding to a dimeric TNF-alpha soluble receptor fusion protein (mTNFR-Is/Ig).
Results: Delivery of the plasmid into the knees at symptom onset improved the histological inflammation and destruction not only at the knees, but also at the ankles, indicating a local and a regional therapeutic effect. The plasmid was detected in synovial membrane and meniscus specimens from the injected joints. In the synovial membrane, 15 days post-injection, interleukin (IL)-17 and TNF-alpha mRNAs expression were increased, whereas IL-10 mRNA was unchanged. However, the empty plasmid exerted a pro-inflammatory effect 30 days post-injection.
Conclusions: These data indicate that local nonviral gene therapy against TNF-alpha is effective, although further work is needed to decrease plasmid induced inflammation.
Copyright 2010 John Wiley & Sons, Ltd.