Chitinases have been successfully used in combination with Bacillus thuringiensis delta-endotoxins forming crystals in order to enhance their insecticidal activities. In this context, we opted for promoting the chitinase integration into these crystals. Thus, we engineered, for the first time, a fusion protein (CDF) consisting of the chitinase Chi255 and the carboxy-terminal half of Cry1Ac, both from B. thuringiensis subsp. kurstaki. The constructed transcriptional fusion (chi255Δsp-CTcry1Ac) was cloned into a shuttle vector (Escherichia coli/B. thuringiensis) downstream the sporulation-dependent promoters BtI-BtII and upstream the cry1Ac transcription terminator. The resulting plasmid, named pF, was transferred by electroporation to crystalliferous B. thuringiensis strain BNS3 and acrystalliferous strain BNS3Cry-. The functionality of the chimerical chitinase was demonstrated by an improvement of the relative chitinolytic activity of the recombinant strain BNS3/pF by 2.5 folds. Western blot analyses showed that, despite of the instability of CDF when expressed in the acrystalliferous strain, the C-terminal half of Cry1Ac succeeded to allow the integration of the chimerical chitinase into the crystal of BNS3. The recombinant strain BNS3/pF (LC(50) = 144.06 μg g(-1)) was 1.5 times more active against Ephestia kuehniella larvae than the wild strain (LC(50) = 212.10 μg g(-1)).