Active site loops that are conserved across superfamilies of myosins, kinesins, and G proteins play key roles in allosteric coupling of NTP hydrolysis to interaction with track filaments or effector proteins. In this study, we investigated how the class-specific natural variation in the switch-2 active site loop contributes to the motor function of the intracellular transporter myosin-5. We used single-molecule, rapid kinetic and spectroscopic experiments and semiempirical quantum chemical simulations to show that the class-specific switch-2 structure including a tyrosine (Y439) in myosin-5 enables rapid processive translocation along actin filaments by facilitating Mg(2+)-dependent ADP release. Using wild-type control and Y439 point mutant myosin-5 proteins, we demonstrate that the translocation speed precisely correlates with the kinetics of nucleotide exchange. Switch-2 variants can thus be used to fine-tune translocation speed while maintaining high processivity. The class-specific variation of switch-2 in various NTPase superfamilies indicates its general role in the kinetic tuning of Mg(2+)-dependent nucleotide exchange.