Rationale: Omega3 long-chain polyunsaturated fatty acids (omega3-PUFAs) are powerful modulators of angiogenesis. However, little is known about the mechanisms governing omega3-PUFA-dependent attenuation of angiogenesis.
Objective: This study aims to identify a major mechanism by which omega3-PUFAs attenuate retinal neovascularization.
Methods and results: Administering omega3-PUFAs exclusively during the neovascular stage of the mouse model of oxygen-induced retinopathy induces a direct neovascularization reduction of more than 40% without altering vasoobliteration or the regrowth of normal vessels. Cotreatment with an inhibitor of peroxisome proliferator-activated receptor (PPAR)gamma almost completely abrogates this effect. Inhibition of PPARgamma also reverses the omega3-PUFA-induced reduction of retinal tumor necrosis factor-alpha, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, endothelial selectin, and angiopoietin 2 but not vascular endothelial growth factor.
Conclusions: These results identify a direct, PPARgamma-mediated effect of omega3-PUFAs on retinal neovascularization formation and retinal angiogenic activation that is independent of vascular endothelial growth factor.