Seasonality in the strength and spatial scale of processes determining intertidal barnacle population growth

J Anim Ecol. 2010 Nov;79(6):1270-9. doi: 10.1111/j.1365-2656.2010.01727.x.

Abstract

1. Population growth rate is determined by both density-dependent and density-independent processes. In the temperate zone, the strength and spatial scale of these processes are likely to differ seasonally, but such differences have rarely been quantitatively examined. 2. Coverage, the area occupied by organisms, is a measure of resource use in sessile marine populations. Population models used for density-based studies should be able to characterize effectively fluctuations in coverage, but few have tried to apply such models to sessile populations. 3. We observed coverage of the intertidal barnacle Chthamalus challengeri at 20 plots on four shores along the Pacific coast of Japan over 8 years. We then fitted a population model that incorporated both a density-dependent process (strength of density dependence) and density-independent processes (intrinsic growth rate and stochastic fluctuation at different spatial scales) to these data to analyse the seasonal variation of these processes and answer the following two questions: (i) How do the effects of density-dependent and density-independent processes on population growth vary seasonally? (ii) At what spatial scale, regional (tens of kilometres), shore (hundreds of metres), or rock (tens of centimetres), does density-independent stochastic fluctuation most strongly affect population size changes? 4. Barnacle population size tended to decrease in summer, when population dynamics were characterized by a relatively lower intrinsic growth rate, weaker density dependence and stronger stochastic fluctuation. In contrast, population size tended to increase in winter, reflecting a higher intrinsic growth rate, strong density dependence and weak stochastic fluctuation. 5. In summer, population growth rate was strongly affected by regional-scale stochastic fluctuation, whereas in winter it was affected more by rock-scale stochastic fluctuation, suggesting that populations were strongly affected by regional-scale processes in summer but not in winter. 6. These results indicate that seasonally variable density-dependent and density-independent processes determine the population dynamics of C. challengeri. Therefore, to understand fluctuation patterns of populations of this species, seasonality should be taken into account. Moreover, this study demonstrates that population models commonly used for density-based studies are also applicable to coverage-based population studies.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Ecosystem*
  • Japan
  • Models, Biological
  • Models, Statistical
  • Pacific Ocean
  • Population Dynamics
  • Seasons*
  • Thoracica / physiology*
  • Time Factors