The purpose of this study was to evaluate the effects of sclerostin inhibition by treatment with a sclerostin antibody (Scl-AbII) on bone formation, bone mass, and bone strength in an aged, gonad-intact male rat model. Sixteen-month-old male Sprague-Dawley rats were injected subcutaneously with vehicle or Scl-AbII at 5 or 25 mg/kg twice per week for 5 weeks (9-10/group). In vivo dual-energy X-ray absorptiometry (DXA) analysis showed that there was a marked increase in areal bone mineral density of the lumbar vertebrae (L(1) to L(5) ) and long bones (femur and tibia) in both the 5 and 25 mg/kg Scl-AbII-treated groups compared with baseline or vehicle controls at 3 and 5 weeks after treatment. Ex vivo micro-computed tomographic (µCT) analysis demonstrated improved trabecular and cortical architecture at the fifth lumbar vertebral body (L(5) ), femoral diaphysis (FD), and femoral neck (FN) in both Scl-AbII dose groups compared with vehicle controls. The increased cortical and trabecular bone mass was associated with a significantly higher maximal load of L(5) , FD, and FN in the high-dose group. Bone-formation parameters (ie, mineralizing surface, mineral apposition rate, and bone-formation rate) at the proximal tibial metaphysis and tibial shaft were markedly greater on trabecular, periosteal, and endocortical surfaces in both Scl-AbII dose groups compared with controls. These results indicate that sclerostin inhibition by treatment with a sclerostin antibody increased bone formation, bone mass, and bone strength in aged male rats and, furthermore, suggest that pharmacologic inhibition of sclerostin may represent a promising anabolic therapy for low bone mass in aged men.
Copyright © 2010 American Society for Bone and Mineral Research.