Objective: To attempt to mitigate the effects of irradiation on murine skin after high-dose radiation using a novel transcutaneous topical delivery system to locally inhibit gene expression with small interfering RNA (siRNA) against Smad3.
Design: Laboratory investigation.
Setting: University laboratory.
Subjects: Twenty-five wild-type C57 mice.
Intervention: In an isolated skin irradiation model, the dorsal skin of C57 wild-type mice was irradiated (45 Gy). Just before irradiation, Smad3 and nonsense siRNA were applied to 2 separate dorsal skin areas and then reapplied weekly. Skin was harvested after 1 and 4 weeks. Smad3 expression were assessed by immunohistochemistry, and collagen deposition and architecture was examined using picrosirius red collagen staining.
Main outcome measures: Epidermal thickness was measured semiquantitatively at 4 weeks. Radiation-induced fibrosis was measured quantitatively via tensiometry. The Young modulus, a measure of cutaneous rigidity inversely related to elasticity, was determined, with normal irradiated skin serving as a control specimen.
Results: Murine skin treated with topical Smad3 siRNA demonstrated effective Smad3 inhibition at 1 week and persistent suppression at 4 weeks. Collagen deposition and epidermal thickness were significantly decreased in skin treated with Smad3 siRNA compared with control irradiated skin. Tensiometry demonstrated decreased tension in Smad3 siRNA-treated skin, with a Young modulus of 9.29 MPa (nonirradiated normal skin, 7.78 MPa) compared with nonsense (control) siRNA-treated skin (14.68 MPa).
Conclusions: Smad3 expression can be effectively silenced in vivo using a novel topical delivery system. Moreover, cutaneous Smad3 inhibition mitigates radiation-induced changes in tissue elasticity, restoring a near-normal phenotype.