Encoding of novel information has been proposed to rely on the time-locked release of dopamine in the hippocampal formation during novelty detection. However, the site of novelty detection in the hippocampus remains a matter of debate. According to current models, the CA1 and the subiculum act as detectors and distributors of novel sensory information. Although most CA1 pyramidal neurons exhibit regular-spiking behavior, the majority of subicular pyramidal neurons fire high-frequency bursts of action potentials. The present study investigates the efficacy of dopamine D1/D5 receptor activation to facilitate the induction of activity-dependent long-term potentiation (LTP) in rat CA1 regular-spiking and subicular burst-spiking pyramidal cells. Using a weak stimulation protocol, set at a level subthreshold for the induction of LTP, we show that activation of D1/D5 receptors for 5-10 min facilitates LTP in subicular burst-spiking neurons but not in CA1 neurons. The results demonstrate that D1/D5 receptor-facilitated LTP is NMDA receptor-dependent, and requires the activation of protein kinase A. In addition, the D1/D5 receptor-facilitated LTP is shown to be presynaptically expressed and relies on presynaptic Ca(2+) signaling. The phenomenon of dopamine-induced facilitation of presynaptic NMDA receptor-dependent LTP in subicular burst-spiking pyramidal cells is in accordance with observations of the time-locked release of dopamine during novelty detection in this brain region, and reveals an intriguing mechanism for the encoding of hippocampal output information.