Melanoma cells are highly resistant to anoikis, a form of apoptosis induced in nonadherent/inappropriate adhesion conditions. Depleting B-RAF or the prosurvival Bcl-2 family protein Mcl-1 renders mutant B-RAF melanoma cells susceptible to anoikis. In this study, we examined the effect of targeting B-RAF on the survival of primary stage melanoma cells cultured in three-dimensional type I collagen gels, which partially mimics the dermal microenvironment. Depletion/inhibition of B-RAF with small interfering RNA or the mutant B-RAF inhibitor, PLX4720, induced apoptosis of mutant B-RAF melanoma cells in three-dimensional collagen. Apoptosis was dependent on two upregulated BH3-only proteins, Bim-EL and Bmf, and was inhibited by ectopic Mcl-1 expression. Akt3 activation has been associated with the survival of melanoma cells. Mutant B-RAF melanoma cells ectopically expressing a constitutively activated form of Akt3 or endogenously expressing mutant Akt3 were protected from apoptosis induced by B-RAF knockdown or PLX4720 treatment. Furthermore, intrinsically resistant metastatic melanoma cells displayed elevated Akt phosphorylation in three-dimensional collagen and were rendered susceptible to PLX4720 by Akt3 knockdown. Importantly, myristylated Akt3 prevented B-RAF targeting-induced upregulation of Bim-EL and Bmf in three-dimensional collagen and partially protected Mcl-1-depleted cells from apoptosis. These findings delineate how mutant B-RAF protects melanoma cells from apoptosis and provide insight into possible resistance mechanisms to B-RAF inhibitors.
(c)2010 AACR.