Among the costs attributed to Mycobacterium avium ssp. paratuberculosis (MAP) infection in dairy cattle, the effects on reproduction and culling are the least documented. To estimate the cost of MAP infections and Johne's disease in a dairy herd, the rates of calving and culling were calculated for cows in each stage of MAP infection relative to uninfected cows. Data from 6 commercial dairy herds, consisting of 2,818 cows with 2,754 calvings and 1,483 cullings, were used for analysis. Every cow in each study herd was tested regularly for MAP, and herds were followed for between 4 and 7 yr. An ordinal categorical variable for Johne's disease status [test-negative, low-positive (low-shedding or ELISA-positive only), or high-shedding] was defined as a time-dependent variable for all cows with at least 1 positive test result or 2 negative test results. A Cox regression model, stratified on herd and controlling for the time-dependent infection variable, was used to analyze time to culling. Nonshedding animals were significantly less likely to be culled in comparison with animals in the low-shedding or ELISA-positive category, and high-shedding animals had nonsignificantly higher culling rates than low-shedding or ELISA-positive animals. Time to calving was analyzed using a proportional rates model, an analog to the Andersen-Gill regression model suitable for recurrent event data, stratifying on herd and weighted to adjust for the dependent censoring caused by the culling effects described above. High-shedding animals had lower calving rates in comparison with low-shedding or ELISA-positive animals, which tended to have higher calving rates than test-negative animals.
Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.