The likely protective effects of nitric oxide (NO) against ammonium toxicity were investigated in the submerged macrophyte Hydrilla verticillata. The plants were subjected to ammonium stress (3mM ammonium chloride) in the presence of sodium nitroprusside (SNP, 10 μM), an NO donor. Treatment with SNP significantly increased the NO content and partially reversed the ammonium-induced negative effects, including membrane damage and the decrease in levels of chlorophyll, malondialdehyde, glutathione and ascorbic acid. Further, SNP application increased the catalytic activities of ascorbate peroxidase, superoxide dismutase, guaiacol peroxidase, catalase and glutathione S-transferase, but decreased that of NADH-oxidase. Histochemical staining showed that SNP application caused a significant decrease in the levels of superoxides and hydrogen peroxide. In contrast, application of other breakdown products of SNP (10 μM sodium ferrocyanide, 10 μM sodium nitrite and 10 μM sodium nitrate) failed to show any protective effect. The results suggest that the increased intracellular NO, resulting from SNP application, improved the antioxidant capacity of H. verticillata plants in coping with ammonium-induced oxidative stress.
Copyright © 2010 Elsevier Inc. All rights reserved.