Multiple binding sites for the general anesthetic isoflurane identified in the nicotinic acetylcholine receptor transmembrane domain

Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14122-7. doi: 10.1073/pnas.1008534107. Epub 2010 Jul 26.

Abstract

An extensive search for isoflurane binding sites in the nicotinic acetylcholine receptor (nAChR) and the proton gated ion channel from Gloebacter violaceus (GLIC) has been carried out based on molecular dynamics (MD) simulations in fully hydrated lipid membrane environments. Isoflurane introduced into the aqueous phase readily partitions into the lipid membrane and the membrane-bound protein. Specifically, isoflurane binds persistently to three classes of sites in the nAChR transmembrane domain: (i) An isoflurane dimer occludes the pore, contacting residues identified by previous mutagenesis studies; analogous behavior is observed in GLIC. (ii) Several nAChR subunit interfaces are also occupied, in a site suggested by photoaffinity labeling and thought to positively modulate the receptor; these sites are not occupied in GLIC. (iii) Isoflurane binds to the subunit centers of both nAChR alpha chains and one of the GLIC chains, in a site that has had little experimental targeting. Interpreted in the context of existing structural and physiological data, the present MD results support a multisite model for the mechanism of receptor-channel modulation by anesthetics.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Anesthetics, General
  • Bacterial Proteins
  • Binding Sites
  • Ion Channels
  • Isoflurane / pharmacokinetics*
  • Membrane Lipids / metabolism
  • Membrane Proteins / metabolism
  • Protein Structure, Tertiary
  • Receptors, Nicotinic / chemistry
  • Receptors, Nicotinic / metabolism*

Substances

  • Anesthetics, General
  • Bacterial Proteins
  • Ion Channels
  • Membrane Lipids
  • Membrane Proteins
  • Receptors, Nicotinic
  • Isoflurane