Insulin-like growth factor I enhances the expression of aromatase P450 by inhibiting autophagy

Endocrinology. 2010 Oct;151(10):4949-58. doi: 10.1210/en.2010-0294. Epub 2010 Jul 28.

Abstract

Aromatase, a key enzyme of estrogen biosynthesis, is transcriptionally regulated by many growth factors. IGF-I enhances aromatase activity in a variety of cells, but the mechanism of action has not been determined. We herein report our finding of a novel mechanism of action for IGF-I. IGF-I enhanced the dexamethasone (DEX)-induced aromatase activity by 30% in serum-starved THP-1 cells. The increase was associated with a corresponding increase in the level of aromatase protein but not with any change in the mRNA level. Metabolic labeling experiments revealed that IGF-I inhibited the degradation of aromatase. We identified pepstatin A as the most effective inhibitor of aromatase degradation by in vitro assay. Using a nontoxic concentration of pepstatin A, we examined IGF-I's action on aromatase distribution in microsomes and lysosomes. In the presence of pepstatin A, DEX caused an increase in the amount of aromatase in both microsomes and lysosomes, and IGF-I attenuated the DEX-induced accumulation of aromatase in lysosomes and, conversely, enhanced its accumulation in the microsomes. The addition of serum abolished the IGF-I-induced changes. The transport from microsome to lysosome was fluorescently traced in cells using a recombinant aromatase. IGF-I selectively reduced the aromatase signal in the lysosomes. Finally, we observed that IGF-I enhanced the aromatase activity by 50% as early as 1 h after treatment; furthermore, rapamycin, an enhancer of autophagy, completely negated the effect of IGF-I on the enzyme. These results indicate that IGF-I enhances aromatase by the inhibition of autophagy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aromatase / genetics*
  • Aromatase / metabolism
  • Autophagy / drug effects*
  • Autophagy / genetics
  • Cell Line, Tumor
  • Dexamethasone / pharmacology
  • Down-Regulation / drug effects
  • Down-Regulation / genetics
  • Enzyme Activation / drug effects
  • Gene Expression Regulation, Enzymologic / drug effects
  • Humans
  • Insulin-Like Growth Factor I / pharmacology*
  • Lysosomes / drug effects
  • Lysosomes / metabolism
  • Pepstatins / pharmacology
  • Protease Inhibitors / pharmacology
  • Protein Processing, Post-Translational / drug effects
  • Protein Stability / drug effects
  • RNA, Messenger / metabolism
  • Up-Regulation / drug effects

Substances

  • Pepstatins
  • Protease Inhibitors
  • RNA, Messenger
  • Insulin-Like Growth Factor I
  • Dexamethasone
  • Aromatase
  • pepstatin