Signaling lymphocytic activation molecule-associated protein (SAP), an adaptor molecule that recruits Fyn to the signaling lymphocytic activation molecule (SLAM) family of immunomodulatory receptors, is mutated in X-linked lymphoproliferative disease. CD4(+) T cells from SAP-deficient mice have defective TCR-induced and follicular Th cell IL-4 production and impaired T cell-mediated help for germinal center formation; however, the downstream intermediates contributing to these defects remain unclear. We previously found that SAP-deficient CD4(+) T cells exhibit decreased protein kinase C (PKC)-theta recruitment upon TCR stimulation. We demonstrate in this paper using GST pulldowns and coimmunoprecipitation studies that SAP constitutively associates with PKC- in T cells. SAP-PKC-theta interactions required R78 of SAP, a residue previously implicated in Fyn recruitment, yet SAP's interactions with PKC-theta occurred independent of phosphotyrosine binding and Fyn. Overexpression of SAP in T cells increased and sustained PKC-theta recruitment to the immune synapse and elevated IL-4 production in response to TCR plus SLAM-mediated stimulation. Moreover, PKC-theta, like SAP, was required for SLAM-mediated increases in IL-4 production, and, conversely, membrane-targeted PKC-theta mutants rescued IL-4 expression in SAP(-/-) CD4(+) T cells, providing genetic evidence that PKC-theta is a critical component of SLAM/SAP-mediated pathways that influence TCR-driven IL-4 production.