[Identification of cucumber disease using hyperspectral imaging and discriminate analysis]

Guang Pu Xue Yu Guang Pu Fen Xi. 2010 May;30(5):1357-61.
[Article in Chinese]

Abstract

Hyperspectral imaging (400-720 nm) and discriminate analysis were investigated for the detection of normal and diseased cucumber leaf samples with powdery mildew (Sphaerotheca fuliginea), angular leaf spot (Pseudomopnas syringae), downy mildew (Pseudoperonospora cubensis), and brown spot (Corynespora cassiicola). A hyperspectral imaging system was es tablished to acquire and pre-process leaf images, as well as to extract leaf spectral properties. Owing to the complexity of the original spectral data, stepwise discriminate and canonical discriminate were executed to reduce the numerous spectral information, in order to decrease the amount of calculation and improve the accuracy. By the stepwise discriminate we selected 12 optimal wavelengths from the original 55 wavelengths, and after the canonical discriminate, the 55 wavelengths were reduced to 2 canonical variables. Then the discriminate models were developed to classify the leaf samples. The result shows that the stepwise discriminate model achieved classification accuracies of 100% and 94% for the training and testing sets, respectively. For the canonical model, the classification accuracies for the training and testing sets were both 100%. These results indicated that it is feasible to identify and classify cucumber diseases using hyperspectral imaging technology and discriminate analysis. The preliminary study, which was done in a closed room with restrictions to avoid interference of the field environment, showed that there is a potential to establish an online field application in cucumber disease detection based on visible spectroscopy.

MeSH terms

  • Ascomycota*
  • Cucumis sativus / microbiology*
  • Discriminant Analysis
  • Plant Diseases*
  • Plant Leaves / microbiology
  • Spectrum Analysis