Vectorial photoinduced electron transfer in multicomponent film systems of poly(3-hexylthiophene), porphyrin-fullerene dyad, and perylenetetracarboxidiimide

Photochem Photobiol Sci. 2010 Sep 24;9(9):1212-7. doi: 10.1039/c0pp00180e. Epub 2010 Aug 4.

Abstract

Multistage electron transfer in a film system consisting of a hole-transporting layer (HTL), donor-acceptor pair (D-A), and an electron-transporting layer (ETL) was studied by photovoltage and flash-photolysis techniques. Poly(3-hexylthiophene) (PHT) was used as the HTL, while a symmetric porphyrin-fullerene dyad (P-F) and perylenetetracarboxidiimide (PTCDI) layers were functioning as the D-A pair and ETL, respectively. The photoexcitation of this three-component film system causes charge separations in the monomolecular P-F film, followed by electron transfer from the PHT polymer film and the fullerene anions to the porphyrin cations and the PTCDI layer, respectively. The final transient state is a charged PHT(+)|P-F|PTCDI(-) system, with significantly increased amplitude and lifetime of the photoelectrical signals compared to previously studied P-F|PTCDI and PHT|P-F systems, due to the its increased charge-separation distance. The study promotes the knowledge on the charge transfer mechanism in multilayered film systems.