Landfill or digester gas can contain man-made volatile methylsiloxanes (VMS), usually in the range of a few milligrams per normal cubic metre (Nm(3)). Until now, no standard method for siloxane quantification exists and there is controversy with respect to which sampling procedure is most suitable. This paper presents an analytical and a sampling procedure for the quantification of common VMS in biogas via GC-MS and polyvinyl fluoride (Tedlar) bags. Two commercially available Tedlar bag models are studied. One is equipped with a polypropylene valve with integrated septum, the other with a dual port fitting made from stainless steel. Siloxane recovery in landfill gas samples is investigated as a function of storage time, temperature, surface-to-volume ratio and background gas. Recovery was found to depend on the type of fitting employed. The siloxanes sampled in the bag with the polypropylene valve show high and stable recovery, even after more than 30 days. Sufficiently low detection limits below 10 microg Nm(-3) and good reproducibility can be achieved. The method is therefore well applicable to biogas, greatly facilitating sampling in comparison with other common techniques involving siloxane enrichment using sorption media.
Copyright 2010 Elsevier B.V. All rights reserved.