Staphylococcal cassette chromosome mec (SCCmec) is a large mobile genetic element which is used frequently for subtyping of methicillin-resistant Staphylococcus aureus (MRSA) strains. MRSA SCCmec type IV not only predominates among community-acquired MRSA (CA-MRSA) strains but also is associated with several genetic lineages of hospital-acquired MRSA (HA-MRSA) and with other species. The objective of this study was to investigate the diversity of MRSA strains classified as SCCmec type IV by using a multiplex PCR-based reverse line blot (mPCR/RLB) hybridization assay as well as spa typing and pulsed-field gel electrophoresis (PFGE). Sixty-two primer pairs and 63 probes were designed to interrogate each open reading frame (ORF) of SCCmec type IV sequences. A set of 131 MRSA SCCmec type IV isolates were classified into 79 subtypes by this method. There was considerable concordance between SCCmec type IV subtyping, spa typing, and PFGE patterns for clinical isolates, and the stability of SCCmec type IV subtyping was comparable to that of the other two methods. Using an in-house computer program, we showed that a subset of 20 genetic markers could achieve the same level of discrimination between isolates as the full set of 62, with a Simpson's index of diversity of 0.975. SCCmec type IV has a much higher level of diversity than previously suggested. The application of the mPCR/RLB hybridization assay to MRSA SCCmec type IV subtyping can improve the discriminatory power and throughput of MRSA typing and has the potential to enhance rapid infection control surveillance and outbreak detection.