A highly sensitive competitive immunosensor based on the electrochemiluminescence (ECL) of quantum dots (QDs) was proposed by coupling with an enzymatic amplification. The fabrication process of the immunosensor was traced with atomic force microscopic images and electrochemical impedance spectra. The strong cathodic ECL emission of the immobilized QDs could be detected at a relatively low emission potential. The reduction of dissolved oxygen during the cathodic process provided a self-produced coreactant, H(2)O(2), for the ECL emission. Using human IgG (HIgG) as a model protein, upon the immuno-recognition of the immobilized HIgG to its antibody labeled simply with horseradish peroxidase, the ECL intensity decreased due to the steric hindrance of the proteins to electron transfer. The decrease could be greatly amplified by an enzymatic cycle to consume the self-produced coreactant, leading to a wide calibration range of 0.05 ng mL(-1) approximately 5 microg mL(-1) and a low limit of detection for the competitive immunoassay of HIgG. This immunosensor showed good stability and fabrication reproducibility. The immunoassays of practical samples showed acceptable results. This facile immunosensing strategy opened a new avenue for detection of proteins and application of QDs in ECL biosensing.