This study investigated the potential of Fourier-transform infrared (FT-IR) spectroscopy and chemometric techniques to produce a mathematical model that would confirm or refute the provenance of honeys claiming to be Corsican. Authentic honey samples from two harvest seasons (2004/2005 and 2005/2006) were collected from Ireland (n=2), Italy (n=30), Austria (n=40), Germany (n=36), mainland France (n=46), and Corsica (n=219). Prior to scanning, samples were diluted with distilled water to a standard solids content (70 degrees Brix). Spectra (2500-12500 nm) were recorded at room temperature using a FT-IR spectrometer equipped with a germanium attenuated total reflectance (ATR) accessory. Standard normal variate (SNV) and first- and second-derivative data pretreatments were applied to the recorded spectra, which were processed using factorial discriminant analysis (FDA) and partial least-squares (PLS) regression analysis. Overall correct classification figures of 82% (FDA) and 87% (PLS) were obtained for a separate validation set comprising samples from both harvests.