The geochemical fate of selenium is of key importance for today's society due to its role as a highly toxic essential micronutrient and as a significant component of high level radioactive waste (HLRW) originating from the operation of nuclear reactors. Understanding and prediction of the long-term behavior of Se in natural environments requires identification of the in situ speciation of selenium. This article describes an XAS-based investigation into the solid phase speciation of Se upon interaction of Se(IV) with Boom Clay, a reducing, complex sediment selected as model host rock for clay-based deep geological disposal of HLRW in Belgium and Europe. Using a combination of long-term batch sorption experiments, linear combination XANES analysis and ITFA-based EXAFS analysis allowed for the first time to identify Se0 as the dominant solid phase speciation of Se in Boom Clay systems equilibrated with Se(IV).