Sibutramine hydrochloride monohydrate is the only centrally active weight-modifying agent currently approved by the FDA for long-term use in the treatment of obesity. Systemic sibutramine treatment has been shown to reduce food intake in humans and rodent models in a manner that is consistent with the enhancement of satiety mechanisms. Although it is generally assumed that the hypophagic effects of the drug are mediated by actions within the brain, the locus or loci of these effects remains unclear. These experiments compared the effects of systemic and intracranial injections of sibutramine on the intake of a palatable diet in non-deprived animals. Consistent with prior reports, systemic injections of sibutramine hydrochloride (at 0, 0.5, 1.0, or 3.0mg/kg sibutramine i.p.) dose-dependently reduced feeding on a high fat/high sucrose diet across a 2-h feeding session, but did not alter water intake or locomotor activity. In contrast, bilateral injections of sibutramine (at 0.0, 2.0, 4.0 and 10.0μg/0.5μl/side) into either the paraventricular nucleus of the hypothalamus (PVN) or the medial nucleus accumbens shell (ACb) significantly and dose-dependently increased food intake of the sweetened fat diet. ACb treatment also modestly inhibited locomotor behavior; intracranial injections had no effect on water consumption. These experiments are the first to suggest that sibutramine treatment may have distinct actions upon separate neural circuits that modulate food intake behavior in the rat.
Copyright 2010 Elsevier Ireland Ltd. All rights reserved.