Temporal resolution and SNR requirements for accurate DCE-MRI data analysis using the AATH model

Magn Reson Med. 2010 Dec;64(6):1772-80. doi: 10.1002/mrm.22573. Epub 2010 Aug 16.

Abstract

Dynamic contrast-enhanced MRI has been used in conjunction with tracer kinetics modeling in a wide range of tissues for treatment monitoring, oncology drug development, and investigation of disease processes. Accurate measurement of model parameters relies on acquiring data with high temporal resolution and low noise, particularly for models with large numbers of free parameters, such as the adiabatic approximation to the tissue homogeneity model for separate measurements of blood flow and vessel permeability. In this simulation study, accuracy of the adiabatic approximation to the tissue homogeneity model was investigated, examining the effects of temporal resolution, noise levels, and error in the measured arterial input function. A temporal resolution of 1.5 s and high SNR (noise sd = 0.05) were found to ensure minimal bias (<5%) in all four model parameters (extraction fraction, blood flow, mean transit time, and extravascular extracellular volume), and the sampling interval can be relaxed to 6 s, if the transit time need not be measured accurately (bias becomes >10%). A 10% error in the measured height of the arterial input function first pass peak resulted in an error of at most 10% in each model parameter.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Computer Simulation
  • Contrast Media / pharmacokinetics*
  • Humans
  • Image Enhancement / methods
  • Image Processing, Computer-Assisted / methods*
  • Magnetic Resonance Imaging / methods*
  • Models, Biological*
  • Time Factors

Substances

  • Contrast Media