The robot and sensors integration for computer-assisted surgery and therapy (ROBOCAST) project (FP7-ICT-2007-215190) is co-funded by the European Union within the Seventh Framework Programme in the field of information and communication technologies. The ROBOCAST project focuses on robot- and artificial-intelligence-assisted keyhole neurosurgery (tumour biopsy and local drug delivery along straight or turning paths). The goal of this project is to assist surgeons with a robotic system controlled by an intelligent high-level controller (HLC) able to gather and integrate information from the surgeon, from diagnostic images, and from an array of on-field sensors. The HLC integrates pre-operative and intra-operative diagnostics data and measurements, intelligence augmentation, multiple-robot dexterity, and multiple sensory inputs in a closed-loop cooperating scheme including a smart interface for improved haptic immersion and integration. This paper, after the overall architecture description, focuses on the intelligent trajectory planner based on risk estimation and human criticism. The current status of development is reported, and first tests on the planner are shown by using a real image stack and risk descriptor phantom. The advantages of using a fuzzy risk description are given by the possibility of upgrading the knowledge on-field without the intervention of a knowledge engineer.