Background: Receptor binding of complement C5a leads to proinflammatory activation of many cell types, but the role of receptor-mediated action during arterial remodeling after injury has not been studied. In the present study, we examined the contribution of the C5a receptor (C5aR) to neointima formation in apolipoprotein E-deficient mice employing a C5aR antagonist (C5aRA) and a C5aR-blocking monoclonal antibody.
Methods and results: Mice fed an atherogenic diet were subjected to wire-induced endothelial denudation of the carotid artery and treated with C5aRA and anti-C5aR-blocking monoclonal antibody or vehicle control. Compared with controls, neointima formation was significantly reduced in mice receiving C5aRA or anti-C5aR-blocking monoclonal antibody for 1 week but not for 3 weeks, attributable to an increased content of vascular smooth muscle cells, whereas a marked decrease in monocyte and neutrophil content was associated with reduced vascular cell adhesion molecule-1. As assessed by immunohistochemistry, reverse transcription polymerase chain reaction, and flow cytometry, C5aR was expressed in lesional and cultured vascular smooth muscle cells, upregulated by injury or tumor necrosis factor-alpha, and reduced by C5aRA. Plasma levels and neointimal plasminogen activator inhibitor-1 peaked 1 week after injury and were downregulated in C5aRA-treated mice. In vitro, C5a induced plasminogen activator inhibitor-1 expression in endothelial cells and vascular smooth muscle cells in a C5aRA-dependent manner, possibly accounting for higher vascular smooth muscle cell immigration.
Conclusions: One-week treatment with C5aRA or anti-C5aR-blocking monoclonal antibody limited neointimal hyperplasia and inflammatory cell content and was associated with reduced vascular cell adhesion molecule-1 expression. However, treatment for 3 weeks failed to reduce but rather stabilized plaques, likely by reducing vascular plasminogen activator inhibitor-1 and increasing vascular smooth muscle cell migration.