The possibility of in vivo investigation of the pharmacokinetics of photosensitizers by means of fluorescence transillumination imaging is demonstrated. An animal is scanned in the transilluminative configuration by a single source and detector pair. Transillumination is chosen as an alternative approach to reflection imaging. In comparison with the traditional back-reflection technique, transillumination is preferable for photosensitizer detection due to its higher sensitivity to deep-seated fluorophores. The experiments are performed on transplantable mouse cervical carcinomas using three drugs: photosens, alasens, and fotoditazin. For quantitative evaluation of the photosensitizer concentration in tumor tissue the fluorescence signal is calibrated using tissue phantoms. We show that the kinetics of photosensitizer tumor uptake obtained by transillumination imaging in vivo agree with data of standard ex vivo methods. The described approach enables rapid and cost-effective study of newly developed photosensitizers in small animals.