Purpose: To assess the prevalence of defective homologous recombination (HR)-based DNA repair in sporadic primary breast cancers, examine the clincopathologic features that correlate with defective HR and the relationship with neoadjuvant chemotherapy response.
Experimental design: We examined a cohort of 68 patients with sporadic primary breast cancer who received neoadjuvant anthracylcine-based chemotherapy, with core biopsies taken 24 hours after the first cycle of chemotherapy. We assessed RAD51 focus formation, a marker of HR competence, by immunofluorescence in postchemotherapy biopsies along with geminin as a marker of proliferative cells. We assessed the RAD51 score as the proportion of proliferative cells with RAD51 foci.
Results: A low RAD51 score was present in 26% of cases (15/57, 95% CI: 15%-40%). Low RAD51 score correlated with high histologic grade (P = 0.031) and high baseline Ki67 (P = 0.005). Low RAD51 score was more frequent in triple-negative breast cancers than in ER- and/or HER2-positive breast cancer (67% vs. 19% respectively; P = 0.0036). Low RAD51 score was strongly predictive of pathologic complete response (pathCR) to chemotherapy, with 33% low RAD51 score cancers achieving pathCR compared with 3% of other cancers (P = 0.011).
Conclusions: Our results suggest that defective HR, as indicated by low RAD51 score, may be one of the factors that underlie sensitivity to anthracycline-based chemotherapy. Defective HR is frequent in triple-negative breast cancer, but it is also present in a subset of other subtypes, identifying breast cancers that may benefit from therapies that target defective HR such as PARP inhibitors.
©2010 AACR.