Radiation-guided drug delivery to mouse models of lung cancer

Clin Cancer Res. 2010 Oct 15;16(20):4968-77. doi: 10.1158/1078-0432.CCR-10-0969. Epub 2010 Aug 27.

Abstract

Purpose: The purpose of this study was to achieve improved cancer-specific delivery and bioavailability of radiation-sensitizing chemotherapy using radiation-guided drug delivery.

Experimental design: Phage display technology was used to isolate a recombinant peptide (HVGGSSV) that binds to a radiation-inducible receptor in irradiated tumors. This peptide was used to target nab-paclitaxel to irradiated tumors, achieving tumor-specificity and enhanced bioavailability of paclitaxel.

Results: Optical imaging studies showed that HVGGSSV-guided nab-paclitaxel selectively targeted irradiated tumors and showed 1.48 ± 1.66 photons/s/cm(2)/sr greater radiance compared with SGVSGHV-nab-paclitaxel, and 1.49 ± 1.36 photons/s/cm(2)/sr greater than nab-paclitaxel alone (P < 0.05). Biodistribution studies showed >5-fold increase in paclitaxel levels within irradiated tumors in HVGGSSV-nab-paclitaxel-treated groups as compared with either nab-paclitaxel or SGVSGHV-nab-paclitaxel at 72 hours. Both Lewis lung carcinoma and H460 lung carcinoma murine models showed significant tumor growth delay for HVGGSSV-nab-paclitaxel as compared with nab-paclitaxel, SGVSGHV-nab-paclitaxel,and saline controls. HVGGSSV-nab-paclitaxel treatment induced a significantly greater loss in vasculature in irradiated tumors compared with unirradiated tumors, nab-paclitaxel, SGVSGHV-nab-paclitaxel, and untreated controls.

Conclusions: HVGGSSV-nab-paclitaxel was found to bind specifically to the tax-interacting protein-1 (TIP-1) receptor expressed in irradiated tumors, enhance bioavailability of paclitaxel, and significantly increase tumor growth delay as compared with controls in mouse models of lung cancer. Here we show that targeting nab-paclitaxel to radiation-inducible TIP-1 results in increased tumor-specific drug delivery and enhanced biological efficacy in the treatment of cancer.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Albumins / administration & dosage*
  • Albumins / chemistry
  • Albumins / pharmacokinetics
  • Amino Acid Sequence
  • Animals
  • Biological Availability
  • Carcinoma, Large Cell / drug therapy*
  • Carcinoma, Large Cell / metabolism
  • Carcinoma, Large Cell / radiotherapy
  • Carcinoma, Lewis Lung / drug therapy*
  • Carcinoma, Lewis Lung / metabolism
  • Carcinoma, Lewis Lung / radiotherapy
  • Cell Line, Tumor
  • Disease Models, Animal
  • Drug Delivery Systems / methods*
  • Guinea Pigs
  • Humans
  • Lung Neoplasms / drug therapy*
  • Lung Neoplasms / metabolism
  • Lung Neoplasms / radiotherapy
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Inbred C57BL
  • Mice, Nude
  • Molecular Sequence Data
  • Paclitaxel / administration & dosage*
  • Paclitaxel / chemistry
  • Paclitaxel / pharmacokinetics
  • Peptides / administration & dosage*
  • Peptides / chemistry
  • Peptides / pharmacokinetics
  • Rabbits
  • Tissue Distribution
  • Xenograft Model Antitumor Assays

Substances

  • 130-nm albumin-bound paclitaxel
  • Albumins
  • Peptides
  • Paclitaxel