Apoptosis and macrophage burden are believed to correlate with atherosclerotic plaque vulnerability and are therefore considered important diagnostic and therapeutic targets for atherosclerosis. These cell types are characterized by the exposure of phosphatidylserine (PS) at their surface. In the present study, we developed and applied a small micellar fluorescent annexin A5-functionalized nanoparticle for noninvasive magnetic resonance imaging (MRI) of PS exposing cells in atherosclerotic lesions. Annexin A5-mediated target-specificity was confirmed with ellipsometry and in vitro binding to apoptotic Jurkat cells. In vivo T(1)-weighted MRI of the abdominal aorta in atherosclerotic ApoE(-/-) mice revealed enhanced uptake of the annexin A5-micelles as compared to control-micelles, which was corroborated with ex vivo near-infrared fluorescence images of excised whole aortas. Confocal laser scanning microscopy (CLSM) demonstrated that the targeted agent was associated with macrophages and apoptotic cells, whereas the nonspecific control agent showed no clear uptake by such cells. In conclusion, the annexin A5-conjugated bimodal micelles displayed potential for noninvasive assessment of cell types that are considered to significantly contribute to plaque instability and therefore may be of great value in the assessment of atherosclerotic lesion phenotype.