Purpose of review: Acute myeloid leukemia (AML) is a highly heterogeneous disorder being composed of various genetically defined subtypes. In recent years, molecular research provided the basis for a more differentiated characterization of AML patients, for example, of the large subgroup with normal karyotypes. This review summarizes the current status of molecular diagnostics in AML and refers to the diagnostic techniques being most suitable for the individual markers.
Recent findings: A molecular data set based on mutations of the NPM1, FLT3, and CEBPA genes and the MLL-PTD provides a prognostically relevant risk stratification that can support the decision pro or con an allogeneic hematopoietic stem cell transplantation in first remission. The panel of known molecular markers is continuously increasing, for example, considering the recently described TET2 and IDH1 mutations. The introduction of next generation sequencing will certainly catalyze the molecular characterization of AML. Monitoring of the minimal residual disease load with quantitative real-time PCR can be performed for NPM1 and MLL-PTD-mutated cases.
Summary: Targeted therapy studies with FLT3 inhibitors for patients with FLT3-mutated AML as single agents or combined with chemotherapy illustrate the translation of the molecular techniques into clinical practice already being realized in distinct subgroups of AML.