Neonatal diabetes caused by mutations in sulfonylurea receptor 1: interplay between expression and Mg-nucleotide gating defects of ATP-sensitive potassium channels

J Clin Endocrinol Metab. 2010 Dec;95(12):E473-8. doi: 10.1210/jc.2010-1231. Epub 2010 Sep 1.

Abstract

Context: ATP-sensitive potassium (KATP) channels regulate insulin secretion by coupling glucose metabolism to β-cell membrane potential. Gain-of-function mutations in the sulfonylurea receptor 1 (SUR1) or Kir6.2 channel subunit underlie neonatal diabetes.

Objective: The objective of the study was to determine the mechanisms by which two SUR1 mutations, E208K and V324M, associated with transient neonatal diabetes affect KATP channel function.

Design: E208K or V324M mutant SUR1 was coexpressed with Kir6.2 in COS cells, and expression and gating properties of the resulting channels were assessed biochemically and electrophysiologically.

Results: Both E208K and V324M augment channel response to MgADP stimulation without altering sensitivity to ATP4- or sulfonylureas. Surprisingly, whereas E208K causes only a small increase in MgADP response consistent with the mild transient diabetes phenotype, V324M causes a severe activating gating defect. Unlike E208K, V324M also impairs channel expression at the cell surface, which is expected to dampen its functional impact on β-cells. When either mutation was combined with a mutation in the second nucleotide binding domain of SUR1 previously shown to abolish Mg-nucleotide response, the activating effect of E208K and V324M was also abolished. Moreover, combination of E208K and V324M results in channels with Mg-nucleotide sensitivity greater than that seen in individual mutations alone.

Conclusion: The results demonstrate that E208K and V324M, located in distinct domains of SUR1, enhance transduction of Mg-nucleotide stimulation from the SUR1 nucleotide binding folds to Kir6.2. Furthermore, they suggest that diabetes severity is determined by interplay between effects of a mutation on channel expression and channel gating.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP-Binding Cassette Transporters / genetics*
  • Amino Acid Substitution
  • Animals
  • COS Cells
  • Chlorocebus aethiops
  • Diabetes Mellitus / genetics*
  • Gene Expression Regulation
  • Heterozygote
  • Humans
  • Infant, Newborn
  • Infant, Newborn, Diseases / genetics*
  • KATP Channels / physiology*
  • Magnesium / physiology
  • Mutation
  • Potassium Channels, Inwardly Rectifying / genetics*
  • Potassium Channels, Inwardly Rectifying / physiology
  • Receptors, Drug / genetics*
  • Sulfonylurea Receptors

Substances

  • ABCC8 protein, human
  • ATP-Binding Cassette Transporters
  • KATP Channels
  • Kir6.2 channel
  • Potassium Channels, Inwardly Rectifying
  • Receptors, Drug
  • Sulfonylurea Receptors
  • Magnesium