Developing axons are guided to their targets by molecular cues in their local environment. Some cues are short-range, deriving from cells along axonal pathways. There is also increasing evidence for longer-range guidance cues, in the form of gradients of diffusible chemoattractant molecules, which originate from restricted populations of target cells. The guidance of developing commissural axons within the spinal cord depends on one of their intermediate cellular targets, the floor plate. We have shown previously that floor plate cells secrete a diffusible factor(s) that can alter the direction of commissural axon growth in vitro. Here we show that the factor is an effective chemoattractant for commissural axons. It can diffuse considerable distances through a collagen gel matrix and through dorsal and ventral neural epithelium in vitro to reorient the growth of virtually all commissural axons. The orientation of axons occurs in the absence of detectable effects on the survival of commissural neurons or on the rate of commissural axon extension. The regionally restricted expression of the factor suggests that it is present in the embryonic spinal cord in a gradient with its high point at the floor plate. These observations support the idea that the guidance of commissural axons to the ventral midline of the spinal cord results in part from the secretion of a chemoattractant by the floor plate.