An increase in brain suppressor of cytokine signaling 3 (SOCS3) has been implicated in the development of both leptin and insulin resistance. Socs3 mRNA is localized throughout the brain, and it remains unclear which brain areas are involved in the effect of SOCS3 levels on energy balance. We investigated the role of SOCS3 expressed in the mediobasal hypothalamus (MBH) in the development of diet-induced obesity in adult rats. Socs3 mRNA was down-regulated by local injection of adeno-associated viral vectors expressing a short hairpin directed against Socs3, after which we determined the response to high-fat high-sucrose choice diet. In contrast to neuronal Socs3 knockout mice, rats with SOCS3 knockdown limited to the MBH showed increased body weight gain, larger amounts of white adipose tissue, and higher leptin concentrations at the end of the experiment. These effects were partly due to the decrease in locomotor activity, as 24 h food intake was comparable with controls. In addition, rats with Socs3 knockdown in the MBH showed alterations in their meal patterns: average meal size in the light period was increased and was accompanied by a compensatory decrease in meal frequency in the dark phase. In addition, neuropeptide Y (Npy) mRNA levels were significantly increased in the arcuate nucleus of Socs3 knockdown rats. Since leptin is known to stimulate Npy transcription in the absence of Socs3, these data suggest that knockdown of Socs3 mRNA limited to the MBH increases Npy mRNA levels, which subsequently decreases locomotor activity and alters feeding patterns.