Abstract
Fungal degradation of plant biomass may provide insights for improving cellulosic biofuel production. We show that the model cellulolytic fungus Neurospora crassa relies on a high-affinity cellodextrin transport system for rapid growth on cellulose. Reconstitution of the N. crassa cellodextrin transport system in Saccharomyces cerevisiae promotes efficient growth of this yeast on cellodextrins. In simultaneous saccharification and fermentation experiments, the engineered yeast strains more rapidly convert cellulose to ethanol when compared with yeast lacking this system.
Publication types
-
Research Support, Non-U.S. Gov't
MeSH terms
-
Biofuels*
-
Biological Transport
-
Biomass
-
Cellobiose / metabolism
-
Cellulase / metabolism
-
Cellulose / analogs & derivatives*
-
Cellulose / metabolism*
-
Dextrins / metabolism*
-
Ethanol / metabolism
-
Fermentation
-
Fungal Proteins / genetics
-
Fungal Proteins / metabolism*
-
Genetic Engineering
-
Kinetics
-
Membrane Transport Proteins / genetics
-
Membrane Transport Proteins / metabolism*
-
Neurospora crassa / genetics
-
Neurospora crassa / growth & development
-
Neurospora crassa / metabolism*
-
Saccharomyces cerevisiae / genetics
-
Saccharomyces cerevisiae / growth & development
-
Saccharomyces cerevisiae / metabolism*
-
Saccharomyces cerevisiae Proteins / metabolism
-
beta-Glucosidase / metabolism
Substances
-
Biofuels
-
Dextrins
-
Fungal Proteins
-
Membrane Transport Proteins
-
Saccharomyces cerevisiae Proteins
-
Cellobiose
-
Ethanol
-
Cellulose
-
cellodextrin
-
beta-Glucosidase
-
Cellulase